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Reviews

▶ Definition 7.5 Let G be a set of real-valued functions defined on Rd. We say that
G has solution set components bound B if for any 1 ≤ k ≤ d and any
{f1, . . . fk} ⊆ G that has regular zero-set intersetions, we have

CC
( k∩

i=1

{a ∈ Rd : fi(a) = 0}
)
≤ B.

▶ Theorem 7.6 Suppose that F is a class of real-valued functions defined on Rd × X,
and that H is a k-combination of sgn(F). If F is closed under addition of
constants, has solution set components bound B, and functions in F are Cd in
their parameters, then

ΠH(m) ≤ B
d∑

i=0

(mk
i

)
≤ B

( emk
d

)d
,

for m ≥ d/k.
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8.2 Function Classes that are Polynomial in their Parameters

▶ Consider classes of functions that can be expressed as boolean combinations of
thresholded real-valued functions, each of which is polynomial in its parameters.

▶ Lemma 8.1 Suppose f : Rd → R is a polynomial of degree l. Then the number of
connected components of {a ∈ Rd : f(a) = 0} is no more than ld−1(l + 2).

▶ Corollary 8.2 For l ∈ N, the set of degree l polynomials defined on Rd has solution
set components bound B = 2(2l)d.
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▶ Theorem 8.3 Let F be a class of functions mapping from Rd × X to R so that, for
all x ∈ X and f ∈ F, the function a 7→ f(a, x) is a polynomial on Rd of degree no
more than l. Suppose that H is a k-combination of sgn(F). Then if m ≥ d/k,

ΠH(m) ≤ 2
(2emkl

d

)d
,

and hence VCdim(H) ≤ 2d log2(12kl).
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▶ Theorem 8.4 Suppose h is a function from Rd × Rn to {0, 1} and let

H = {x 7→ h(a, x) : a ∈ Rd}

be the class determined by h. Suppose that h can be compoted by an algorithm
that takes as input the pair (a, x) ∈ Rd × Rn and returns h(a, x) after no more
than t operations of the following types:

▶ the arithmetic operations +,−,×, and / on real numbers,
▶ jumps conditioned on >,≥, <,≤,=, and ̸= comparisions of real numbers, and
▶ output 0 or 1.

Then VCdim(H) ≤ 4d(t + 2).

▶ Theorem 8.5 For all d, t ≥ 1, there is a class H of functions, parametrized by d
real numbers, that can be computed in time O(t) using the model of
computation defined in Thoerem 8.4, and that has VCdim(H) ≥ dt.
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8.3 Piecewise-Polynomial Networks

▶ Theorem 8.6 Suppose N is a feed-forward linear threshold network with a total of
W weights, and let H be the class of functions computed by this network. Then
VCdim(H) = O(W2).

▶ This theorem can easily be generalized to network with piecewise-polynomial
activation functions. A piecewise-polynomial function f : R → R can be written as
f(α) =

∑p
i=1 1A(i)(α)fi(α), where A(1), . . . ,A(p) are disjoint real intervals whose

union is R, and f1, . . . , fp are polynomials. Define the degree of f as the largest
degree of the polynomials fi.
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▶ Theorem 8.7 Suppose N is a feed-forward network with a total of W weights and
k computation units, in which the output unit is a linear threshold unit and every
other computation unit has a piecewise-polynomial activation function with p
pieces and degree no more than l. Then, if H is the class of functions computed
by N, VCdim(H) = O(W(W + kl log2 p)).
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▶ Theorem 8.8 Suppose N is a feed-forward network of the form described in
Theorem 8.7, with W weights, k computation units, and all non-output units
having piecewise-polynomial activation functions with p pieces and degree no
more than l. Suppose in addition that the computation units in the network are
arranged in L layers, so that each unit has connections only from units in earlier
layers. Then if H is the class of functions computed by N,

ΠH(m) ≤ 2L(2emkp(l + 1)L−1)WL,

and
VCdim(H) ≤ 2WL log2(4WLpk/ ln 2) + 2WL2 log2(l + 1) + 2L.

For fixed p, l, VCdim(H) = O(WL log2 W + WL2).
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▶ Theorem 8.9 Suppose s : R → R has the following properties:
1. limα→∞ s(α) = 1 and limα→−∞ s(α) = 0, and
2. s is differentiable at some point α0 ∈ R, with s′(α0) ̸= 0.

For any L ≥ 1 and W ≥ 10L − 14, there is a feed-forward network with L layers
and a total of W parameters, where every computation unit but the output unit
has activation function s, the output unit being a linear threshold unit, and for
which the set H of functions computed by the network has

VCdim(H) ≥
⌊L
2

⌋⌊W
2

⌋
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8.4 Standard Sigmoid Networks
Discrete inputs and bounded fan-in

▶ Consider networks with the standard sigmoid activation, σ(α) = 1/(1 + e−α).

▶ We define the fan-in of a computation unit to be the number of input units or
computation units that feed into it.

▶ Theorem 8.11 Consider a two-layer feed-forward network with input domain
X = {−D,−D + 1, . . . ,D}n (for D ∈ N) and k first-layer computation units, each
with the standard sigmoid activation function. Let W be the total number of
parameters in the network, and suppose that the fan-in of each first-layer unit is
no more than N. Then the class H of functions computed by this network has
VCdim(H) ≤ 2W log2(60ND).
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▶ Theorem 8.12 Consider a two-layer feed-forward linear threshold network that has
W parameters and whose first-layer units have fan-in no more than N. If H is the
set of functions computed by this network on binary inputs, then
VCdim(H) ≤ 2W log2(60N). Furthermore, there is a constant c s.t. for all W
there is a network with W parameters that has VCdim(H) ≥ cW.
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General standard sigmoid networks

▶ Theorem 8.13 Let H be the set of functions computed by a feed-forward network
with W parameters and k computation units, in which each computation unit
other than the output unit has the standard sigmoid activation function (the
output unit being a linear threshold unit). Then

ΠH(m) ≤ 2(Wk)2/2(18Wk2)5Wk
( em

W

)W

probided m ≥ W, and

VCdim(H) ≤ (Wk)2 + 11Wk log2(18Wk2).
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▶ Theorem 8.14 Let h be a function from Rd × Rn to {0, 1}, determining the class

H = {x 7→ h(a, x) : a ∈ Rd}.

Suppose that h can be computed by an algorithm that takes as input the pair
(a, x) ∈ Rd × Rn and returns h(a, x) after no more than t of the following
oprations:

▶ the exponential function α 7→ eα on real numbers,
▶ the arithmetic operations +,−,×, and / on real numbers,
▶ jumps conditioned on >,≥, <,≤,=, and ̸= comparisions of real numbers, and
▶ output 0 or 1.

Then VCdim(H) ≤ t2d(d + 19 log 2(9d)). Furthermore, if the t steps include no
more than q in which the exponential function is evaluated, then

ΠH(m) ≤ 2(d(q+1))2/2(9d(q + 1)2t)5d(q+1)
( em(2t − 2)

d

)d
,

and hence VCdim(H) ≤ (d(q + 1))2 + 11d(q + 1)(t + log2(9d(q + 1))).
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Proof of VC-dimension bounds for sigmoid networks and algorithms

▶ Lemma 8.15 Let f1, . . . , fq be fixed affine functions of a1, . . . , ad, and let G be the
class of polynomials in a1, . . . , ad, ef1(a), . . . , efq(a) of degree no more than l. Then
G has solution set components bound

B = 2q(q−1)/2(l + 1)2d+q(d + 1)d+2q.

▶ Lemma 8.16 Suppose G is the class of functions defined on Rd computed by a
circuit satisfying the following conditions: the circuit contains q gates, the output
gate computes a rational function of degree no more than l ≥ 1, each non-output
gate computes the exponential function of a rational function of degree no more
than l, and the denominator of each rational function is never zero. Then G has
solution set components bound 2(qd)2/2(9qdl)5qd.
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9.2 Large Margin Classifiers

▶ Suppose F is a class of functions defined on the set X and mapping to the
interval [0, 1].

▶ Definition 9.1 Let Z = X × {0, 1}. If f is a real-valued function in F, the margin of
f on (x, y) ∈ Z is

margin(f(x), y) =

f(x)− 1/2 if y = 1

1/2− f(x) otherwise.

Suppose γ is a nonnegative real number and P is a probability distribution on Z.
We define the error erγP(f) of f w.r.t. P and γ as the probability

erγP(f) = P{margin(f(x), y) < γ},

and the misclassification probability of f as

erP(f) = P{sgn(f(x)− 1/2) ̸= y}.
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▶ Definition 9.2 A classification learning algorithm L for F takes as input a margin
parameter γ > 0 and a sample z ∈

∪∞
i=1 Zi, and returns a function in F s.t., for

any ϵ, δ ∈ (0, 1) and any γ > 0, there is an integer m0(ϵ, δ, γ) s.t. if
m ≥ m0(ϵ, δ, γ) then, for any probability distribution P on Z = X × {0, 1},

Pm
{

erP(L(γ, z)) < inf
g∈F

erγP(g) + ϵ
}

≥ 1− δ.

▶ Sample error of f w.r.t. γ on the sample z :

êrγz (f) =
1

m
|{i : margin(f(xi), yi) < γ}|
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▶ Proposition 9.3 For any function f : X → R and any sequence of labelled examples
((x1, y1), . . . , (xm, ym)) in (X × {0, 1})m, if

1

m

m∑
i=1

(f(xi)− yi)
2 < ϵ

then
êrγz (f) < ϵ/(1/2− γ)2

for all 0 ≤ γ < 1/2.
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